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CHAPTER Twelve • SOME ELEMENTS ARE GAME MECHANICS

Mechanic 7: Chance
Our seventh and final game mechanic is chance. We deal with it last because it 
concerns interactions between all of the other six mechanics: space, time, objects, 
actions, rules, and skills.

Chance is an essential part of a fun game because chance means uncertainty, 
and uncertainty means surprises. And as we have discussed earlier, surprises are 
an important source of human pleasure and the secret ingredient of fun.

We must now proceed with caution. You can never take chance for granted, for 
it is very tricky—the math can be difficult, and our intuitions about it are often 
wrong. But a good game designer must become the master of chance and probabil-
ity, sculpting it to his will, to create an experience that is always full of challenging 
decisions and interesting surprises. The challenges of understanding chance are 
well illustrated by a story about the invention of the mathematics of probability—
invented, not surprisingly, for the express purpose of game design.

Invention of Probability
Il est tres bon ésprit, mais quel dommage, il n’est pas geometre.

(He’s a nice guy, but unfortunately, no mathematician.)

—Pascal to Fermat regarding the Chevalier de Méré

It was the year 1654, and French nobleman Antoine Gombaud, the Chevalier de 
Méré (pronounced “Shevulyay duh Mayray”), had a problem. He was an avid gam-
bler and had been playing a game where he would bet that if he rolled a single die 

âŠ‘● Are some players much better at these skills than others? Does this make 
the game feel unfair?

âŠ‘● Can players improve their skills with practice, leading to a feeling of 
mastery?

âŠ‘● Does this game demand the right level of skill?

Exercising skills can be a joyful thing—it is one of the reasons that people love 
games. Of course, it is only joyful if the skills are interesting and rewarding 
and if the challenge level strikes that ideal balance between “too easy” and 
“too hard.” Even dull skills (such as pushing buttons) can be made more inter-
esting by dressing them up as virtual skills and providing the right level of 
challenge. Use this lens as a window into the experience the player is having. 
Because skills do so much to define experience, the Lens of Skill works quite 
well in conjunction with Lens #2, Essential Experience.
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four times, at least one time it would come up as a six. He had made some good 
money from this game, but his friends got tired of losing and refused to play it with 
him any further. Trying to find a new way to fleece his friends, he invented a new 
game that he believed had the same odds as the last one. In his new game, he would 
bet that if he rolled a pair of dice twenty-four times, a twelve would come up at least 
once. His friends were wary at first but soon grew to like his new game, because the 
Chevalier started losing money fast! He was confused, because by his math, both 
games had the same odds. Chevalier’s reasoning was as follows:

First Game: In four rolls of a single die, the Chevalier wins if at least one six 
comes up.

The Chevalier reasoned that the chance of a single die coming up 6 was 1/6, and 
therefore rolling a die four times should mean the chance of winning was

	 4â†œ×â†œ(1/6)â†œæ¸€å±®=â†œ4/6â†œ=â†œ66%, which explained why he tended to win.

Second Game: In twenty-four rolls of a pair of dice, the Chevalier wins if at least 
one 12 comes up.

The Chevalier determined that the chance of getting a 12 (double sixes) on a pair 
of dice was 1/36. He reasoned, then, that rolling the dice 24 times meant the odds 
should be

	 24â†œ×â†œ(1/36)â†œ=â†œ24/36â†œ=â†œ2/3â†œ=â†œ66%. The same odds as the last game!

Confused and losing money, he wrote a letter to mathematician Blaise Pascal, 
asking for advice. Pascal found the problem intriguing—there was no established 
mathematics to answer these questions. Pascal then wrote to his father’s friend, 
Pierre de Fermat, for help. Pascal and Fermat began a lengthy correspondence about 
this and similar problems and, in discovering methods of solving them, established 
probability theory as a new branch of mathematics.

What are the real odds of Chevalier’s games? To understand that, we have to get into 
some math—don’t fret, it’s easy math that anyone can do. Fully covering the mathemat-
ics of probability is not necessary for game design (and beyond the scope of this book), 
but knowing some of the basics can be quite handy. If you are a math genius, you can 
skip this section, or at least read it smugly. For the rest of us, I present the following:

Ten Rules of Probability Every Game Designer Should Know

Rule #1: Fractions Are Decimals Are Percents
If you are one of those people who has always had a hard time with fractions and 
percents, it’s time to face up and deal with them, because they are the language 
of probability. Don’t stress—you can always use a calculator—no one is looking. 



186

CHAPTER Twelve • SOME ELEMENTS ARE GAME MECHANICS

The thing you have to come to grips with is that fractions, decimals, and percents 
are all the same thing and can be used interchangeably. In other words, ½â†œ=â†œ0.5â†œ=â†œ50%. 
Those aren’t three different numbers; they are just three ways of writing exactly 
the same number.

Converting from fractions to decimals is easy. Need to know the decimal equiva-
lent of 33/50? Just type 33â†œ÷â†œ50 into your calculator, and you’ll get 0.66. What about 
percents? They’re easy too. If you look up the word “percent” in the dictionary, 
you’ll see that it really means “per 100.” So, 66% really means 66 per 100, or 66/100, 
or 0.66. If you look at Chevalier’s previous math, you’ll see why we need to convert 
back and forth so often—as humans, we like to talk in percents, but we also like to 
talk about “one chance in six”—so we need a way to convert between these forms. 
If you are the kind of person who suffers from math anxiety, just relax and practice 
a few of these on the calculator—you’ll have the hang of it in no time.

Rule #2: Zero to One—and That’s It!
This one’s easy. Probabilities can only range from 0% to 100%, that is, from 0 to 1 
(see Rule #1), no less and no more. While you can say there is a 10% chance of 
something happening, there is no such thing as a –10% chance and certainly no 
such thing as a 110% chance. A 0% chance of something happening means it won’t 
happen, and a 100% chance means it definitely will. This all might sound obvious, 
but it points out a major problem with Chevalier’s math. Consider his first game 
with the four dice. He believed that with four dice, he had a 4â†œ×â†œ(1/6), or 4/6, or 
0.66, or 66% chance of having a six come up. But what if he had seven dice? Then 
he would have had 7â†œ×â†œ(1/6) or 7/6 or 1.17 or 117% chance of winning! And that is 
certainly wrong—if you roll a die seven times, it might be likely that a six will come 
up one of those times, but it is not guaranteed (in fact, it is about a 72% chance). 
Anytime you calculate a probability that comes up greater than 100% (or less than 0%), 
you know for certain that you’ve done something wrong.

Rule #3: “Looked For” Divided By “Possible 
Outcomes” Equals Probability
The first two rules lay some basic groundwork, but now we are going to talk about 
what probability really is—and it is quite simple. You just take the number of times 
your “looked for” outcome can come up and divide by the number of possible out-
comes (assuming your outcomes are equally likely), and you’ve got it. What is the 
chance of a six coming up when you roll a die? Well, there are six possible outcomes, 
and only one of them is the one we are looking for, so the chance of a six coming 
up is 1â†œ÷â†œ6, or 1/6, or about 17%. What is the chance of an even number coming up 
when you roll a die? There are 3 even numbers, so the answer is 3/6, or 50%. What is 
the chance of drawing a face card from a deck of cards? There are twelve face cards 
in a deck, and fifty-two cards total, so your chances of getting a face card are 12/52, 
or about 23%. If you understand this, you’ve got the fundamental idea of probability.
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Rule #4: Enumerate!
If Rule #3 is as simple as it sounds (and it is), you might wonder why probability 
is so tricky. The reason is that the two numbers we need (the number of “looked 
for” outcomes and the number of possible outcomes) are not always so obvious. 
For example, if I asked you what the odds of flipping a coin three times and get-
ting “heads” at least twice, what is the number of “looked for” outcomes? I’d be 
surprised if you could answer that without writing anything down. An easy way to 
find out the answer is to enumerate all the possible outcomes:

	1.	 HHH

	2.	 HHT

	3.	 HTH

	4.	 HTT

	5.	 THH

	6.	 THT

	7.	 TTH

	8.	 TTT

There are exactly eight possible outcomes. Which ones have heads at least twice? 
#1, #2, #3, and #5. That’s 4 outcomes out of 8 possibilities, so the answer is 4/8, or 
a 50% chance. Now, why didn’t the Chevalier do this with his games? With his first 
game, there were four die rolls, which means 6â†œ×â†œ6â†œ×â†œ6â†œ×â†œ6, or 1296 possibilities. It 
would have been dull work, but he could have enumerated all the possibilities in 
an hour or so (the list would have looked like 1111, 1112, 1113, 1114, 1115, 1116, 
1121, 1122, 1123, etc.), then counted up the number of combinations that had a six 
in them (671), and divided that by 1296 for his answer. Enumeration will let you 
solve almost any probability problem, if you have the time. Consider the Chevalier’s 
second game, though: 24 rolls of 2 dice! There are 36 possible outcomes for 2 dice, 
and so enumerating all 24 rolls would have meant writing down 3624 (a number 37 
digits long) combinations. Even if he could somehow write down one combination 
a second, it would have taken longer than the age of the universe to list them all. 
Enumeration is handy, but when it takes too long, you need to take shortcuts—and 
that’s what the other rules are for.

Rule #5: In Certain Cases, OR Means Add
Very often, we want to determine the chances of “this OR that” happening, such 
as what are the chances of drawing a face card OR an ace from a deck of cards? 
When the two things we are talking about are mutually exclusive, that is, when it is 
impossible for both of them to happen simultaneously, you can add their individual 
probabilities to get an overall probability. For example, the chances of drawing a 
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face card are 12/52, and the chances of drawing an ace are 4/52. Since these are 
mutually exclusive events (it is impossible for them both to happen at once), we can 
add them up: 12/52â†œæ¸€å±®+â†œæ¸€å±®4/52â†œ=â†œ16/52, or about a 31% chance.

But what if we asked a different question: What are the chances of drawing 
an ace from a deck of cards or a diamond? If we add these probabilities, we get 
4/52â†œ+â†œ13/52 (13 diamonds in a deck)â†œ=â†œ17/52. But, if we enumerate, we see this is 
wrong—the right answer is 16/52. Why? Because the two cases are not mutually 
exclusive—I could draw the ace of diamonds! Since this case is not mutually exclu-
sive, “or” does not mean add.

Let’s look at Chevalier’s first game. He seems to be trying to use this rule for his 
die rolls—adding up four probabilities: 1/6â†œ+â†œ1/6â†œ+â†œ1/6â†œ+â†œ1/6. But he gets the wrong 
answer, because the four events are not mutually exclusive. The addition rule is 
handy, but you must be certain the events you are adding up are mutually exclusive 
from one another.

Rule #6: In Certain Cases, AND Means Multiply
This rule is almost the opposite of the previous one! If we want to find the probabil-
ity of two things happening simultaneously, we can multiply their probabilities to 
get the answer—but ONLY if the two events are NOT mutually exclusive! Consider 
two die rolls. If we want to find the probability of rolling a six on both rolls, we can 
multiply together the probabilities of the two events: The chance of getting a six on 
one die roll is 1/6, and also 1/6 for a second die roll. So the chance of getting two 
sixes is 1/6â†œ×â†œ1/6â†œ=â†œ1/36. You could also have determined that by enumeration, of 
course, but this is a much speedier way to do it.

In Rule #5, we asked for the probability of drawing an ace OR a diamond 
from a deck of cards—the rule failed, because the two events were not mutually 
exclusive. So what if we asked about the probability of drawing an ace AND a 
diamond? In other words, what is the probability of drawing the ace of diamonds? 
It should be fairly intuitive that the answer is 1/52, but we can check that with 
Rule #6, since we know the two events are not mutually exclusive. The chance of 
getting an ace is 4/52, and the chance of a diamond is 13/52. Multiplying them, 
4/52â†œ×â†œ13/52â†œ=â†œ52/2704â†œ=â†œ1/52. So, the rule works and matches our intuition.

Do we have enough rules yet to solve Chevalier’s problems? Let’s consider his 
first game:

First Game: In four rolls of a single die, the Chevalier wins if at least one six comes up.

We’ve already established that we could enumerate this and get the answer 
671/1296, but that would take an hour. Is there a quicker way, using the rules we 
have?

(I’ll warn you now—this gets a little hairy. If you don’t really care that much, 
save yourself the headache, and just skip to Rule #7. If you do care, then press on—
you will find it worth the effort.)
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If the question was about the chances of rolling a die four times and getting four 
sixes, that would be an AND question for four events that are not mutually exclu-
sive, and we could just use Rule #6: 1/6â†œ×â†œ1/6â†œ×â†œ1/6â†œ×â†œ1/6â†œ=â†œ1/1296. But that isn’t 
what is asked. This is an OR question for four events that are not mutually exclusive 
(it is possible for the Chevalier to get multiple sixes on the four rolls). So what can 
we do? Well, one way is to break it down into events that are mutually exclusive and 
then add them up. Another way to phrase this game is

What are the chances of rolling four dice, and getting either

	a.	F our sixes, OR

	b.	 Three sixes and one non-six, OR

	c.	 Two sixes and two non-sixes, OR

	d.	 One six and three non-sixes

That might sound a little complicated, but it is four different mutually exclusive 
events, and if we can figure the probability of each, we can just add them up and get 
our answer. We’ve already figured out the probability of (a), using Rule #6: 1/1296. 
So, how about (b)? Really, (b) is four different mutually exclusive possibilities:

	1.	 6, 6, 6, non-six

	2.	 6, 6, non-six, 6

	3.	 6, non-six, 6, 6,

	4.	 Non-six, 6, 6, 6

The probability of rolling a six is 1/6, the probability of rolling a non-six is 5/6. 
So, the probability of each of those is 1/6â†œ×â†œ1/6â†œ×â†œ1/6â†œ×â†œ5/6â†œ=â†œ5/1296. Now, if we add 
up all four, that comes to 20/1296. So, the probability of (b) is 20/1296.

How about (c)? This one is the same as the last, but there are more combinations. 
It is tricky to figure out how many ways there are for exactly two sixes and two non-
sixes to come up, but there are six ways:

	1.	 6, 6, non-six, non-six

	2.	 6, non-six, 6, non-six

	3.	 6, non-six, non-six, 6

	4.	 non-six, 6, 6, non-six

	5.	 non-six, 6, non-six, 6

	6.	 non-six, non-six, 6, 6

And the probability of each of these is 1/6â†œ×â†œ1/6â†œ×â†œ5/6â†œ×â†œ5/6â†œ=â†œ25/1296. Adding up all 
six of them comes to 150/1296.
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This leaves only (d), which is the inverse of (b):

	a.	 Non-six, non-six, non-six, 6

	b.	 Non-six, non-six, 6, non-six

	c.	 Non-six, 6, non-six, non-six

	d.	 6, non-six, non-six, non-six

The probability of each is 5/6â†œ×â†œ5/6â†œ×â†œ5/6â†œ×â†œ1/6â†œ=â†œ125/1296. Adding up all four gives 
500/1296.

So, we have now calculated the probability of the four mutually exclusive events:

	a.	F our sixes—(1/1296)

	b.	 Three sixes and one non-six—(20/1296)

	c.	 Two sixes and two non-sixes—(150/1296)

	d.	 One six and three non-sixes—(500/1296)

Adding up those four probabilities (as Rule #5 allows) gives us a total of 671/1296, 
or about 51.77%. So, we can see that this was a good game for the Chevalier—by 
winning more than 50% of the time, he eventually was likely to make a profit, but 
the game was close enough to even that his friends believed they had a chance—at 
least for a while. It certainly is a very different result than the 66% chance of win-
ning the Chevalier believed he had!

This is the same answer we could have gotten from enumeration, but much 
faster. Really, though, we did a kind of enumeration—it is just that the rules of 
addition and multiplication let us count everything up much faster. Could we do 
the same thing to get the answer to Chevalier’s second game? We could, but with 24 
rolls of two dice, it would probably take an hour or more! This is faster than enu-
meration, but we can do even better by being tricky—that’s where Rule #7 comes in.

Rule #7: One Minus “Does” = “Doesn’t”
This is a more intuitive rule. If the chance of something happening is 10%, the 
chance of it not happening is 90%. Why is this useful? Because often it is quite hard 
to figure out the chance of something happening but easy to figure out the chance 
of it NOT happening.

Consider Chevalier’s second game. To figure out the chance of double sixes com-
ing up at least once on twenty-four die rolls would be nightmarish to figure out, 
because you have so many different possible events to add together (1 double sixes, 
23 non–double sixes; 2 double sixes, 22 non–double sixes; etc.). On the other hand, 
what if we ask a different question: What are the chances of rolling two dice twenty-
four times and NOT getting double sixes? That is now an AND question, for events 
that are not mutually exclusive, so we can use Rule #6 to get the answer! But first 
we’ll use Rule #7 twice—watch.
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The chance of double sixes coming up on a single roll of the dice is 1/36. So, by 
Rule #7, the chance of not getting double sixes is 1â†œ−â†œ1/36, or 35/36.

So, using Rule #6 (multiplication), the chances of not getting double sixes 24 
times in a row is 35/36â†œ×â†œ35/36 twenty-four times, or as we say (35/36)24. You would 
not want to do this calculation by hand, but using a calculator, you find the answer 
is around 0.5086, or 50.86%. But that is the chance of the Chevalier losing. To find 
the chance of the Chevalier winning, we apply Rule #7 again: 1â†œ−â†œ0.5086â†œ=â†œ0.4914, or 
about 49.14%. Now it is clear why he lost this game! His chances of winning were 
close enough to even that it was hard for him to tell if this was a winning or losing 
game, but after playing many times, he was very likely to lose.

Even though all probability problems can be solved through enumeration, Rule 
#7 can be a really handy shortcut. In fact, we could have used the same rule to solve 
Chevalier’s first game!

Rule #8: The Sum of Multiple Linear Random Selections Is 
NOT a Linear Random Selection!
Don’t panic. This one sounds hard, but it is really easy. A “linear random selec-
tion” is simply a random event where all the outcomes have an equal chance of 
happening. A die roll is a great example of a linear random selection. If you add up 
multiple die rolls, though, the possible outcomes do NOT have an equal chance of 
happening. If you roll two dice, for example, your chance of getting a seven is very 
good, while your chance of getting a twelve is small. Enumerating all the possibili-
ties shows you why:

1 2 3 4 5 6 
1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Look at how many 7’s there are and only one little twelve! We can show this in a 
graph, called a probability distribution curve, to visually see the chances of each 
total coming up:

Rule #8 might seem like a very obvious rule, but I frequently find novice game 
designers make the mistake of adding together two randomly selected numbers 
without realizing its effect. Sometimes, it is exactly the effect you want—in the 
game Dungeons and Dragons, players generate (virtual) skill attributes with values 
ranging from 3 to 18 by rolling three six-sided dice. As a result, you see a lot of 
attribute values around 10 or 11, but very few at 3 or 18, and this is exactly what the 
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designers wanted. How would the game be different if players simply rolled a single 
twenty-sided die to get their attributes?

Game designers who want to use mechanic of chance as a tool in their games 
must know what kind of probability distribution curve they want and know how 
to get it. With practice, probability distribution curves will be a very valuable tool 
in your toolbox.

Rule #9: Roll the Dice
All the probability we’ve been talking about so far is theoretical probability, that is, 
mathematically, what ought to happen. There is also practical probability, which is 
a measure of what has happened. For example, the theoretical probability of getting 
a 6 when I roll a die is a perfect 1/6, or about 16.67%. I could find the practical prob-
ability by rolling a six-sided die 100 times and recording how many times I get a 
six. I might record 20 sixes out of 100. In that case, my practical probability is 20%, 
which is not too far from the theoretical probability. Of course, the more trials I do, 
the closer I would expect the practical probability to get to the theoretical probabil-
ity. This is sometimes known as the “Monte Carlo” method, after the famous casino.

The great thing about the Monte Carlo method of determining probability is that it 
doesn’t involve any complex math—you just repeat the test over and over again and 
record how it comes out. It can sometimes give more useful results than theoretical 
probability too, because it is a measure of the real thing. If there is some factor that 
your mathematics didn’t capture (e.g., perhaps your die is slightly weighted toward 
sixes), or if the math is just so complicated that you can’t come up with a theoreti-
cal representation of your case, the Monte Carlo method can be just the thing. The 
Chevalier could easily have found good answers to his questions by just rolling the 
dice again and again, counting up wins, and dividing by the number of trials.

And here in the computer age, if you know how to do a little bit of programming 
(or know someone who can—see Rule #10), you can easily simulate millions of tri-
als in just a few minutes. It isn’t too hard to program simulations of games and get 
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some very useful probability answers. For example, in Monopoly, which squares 
are landed on most frequently? It would be nearly impossible to figure this out 
theoretically—but a simple Monte Carlo simulation allows you to answer the ques-
tion quickly by using a computer to roll the dice and move the pieces around the 
board a few million times. Alternatively, you could make use of the Machinations 
system created by Joris Dormans, which is specifically designed to model gameplay 
systems and show patterns of results through repeated simulations.

Rule #10: Geeks Love Showing Off (Gombaud’s Law)
This is the most important of all the probability rules. If you forget all the oth-
ers but remember this one, you’ll get by just fine. There are many more difficult 
aspects of probability that we won’t get into here—when you run into them, the 
easiest thing to do is to find someone who considers themselves a “math whiz.” 
Generally, these people are thrilled to have someone actually needing their exper-
tise, and they will bend over backwards to help you. I have used Rule #10 to solve 
hard game design probability questions again and again. If there aren’t any experts 
around you, post your question on a forum or mailing list. If you really want a fast 
response, preface it with “This problem is probably too difficult for anyone to solve, 
but I thought I would ask anyway,” for there are many math experts who love the 
ego boost of solving a problem that others think is impossible. In a sense, your 
hard problem is a game for them—why not use game design techniques to make it 
as attractive as possible?

You might even be doing your geek a favor! I like to call Rule #10 “Gombaud’s 
Law,” in honor of Antoine Gombaud, the Chevalier de Méré, who, through his 
awareness of this principle, not only solved his gambling problem (his mathemati-
cal one, anyway), but inadvertently initiated all of probability theory.

You might be afraid of exercising Rule #10, because you are afraid of asking 
stupid questions. If you feel that way, don’t forget that Pascal and Fermat owed the 
Chevalier a great debt—without his stupid questions, they never would have made 
some of their greatest discoveries. Your stupid question might lead to a great truth 
of its own—but you’ll never know unless you ask.

Expected Value
You will use probability in many ways in your designs, but one of the most use-
ful will be to calculate expected value. Very often, when you take an action in a 
game, the action will have a value, either positive or negative. This might be points, 
tokens, or money gained or lost. The expected value of a transaction in a game is 
the average of all the possible values that could result.

For example, there might be a rule in a board game that when a player lands 
on a green space, he can roll a six-sided die and get that many power points. The 
expected value of this event is the average of all the possible outcomes. To get the 
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average in this case, since all the probabilities are equal, we can add up all the 
possible die rolls, 1â†œ+â†œ2â†œ+â†œ3â†œ+â†œ4â†œ+â†œ5â†œ+â†œ6â†œ=â†œ21, and divide by 6, which gives us 3.5. As a 
game designer, it is very useful for you to know that each time someone lands on a 
green space, they will, on average, get 3.5 power points.

But not all examples are so simple—some involve negative outcomes, and out-
comes that aren’t evenly weighted. Consider a game where a player rolls two dice. 
If they get a 7’s, or an 11’s, they win $5, but if they get anything else, they lose $1. 
How do we figure out the expected value of this game?

The chance of rolling a 7 is 6/36.
The chance of rolling an 11 is 2/36.
Using Rule #8, the chance of rolling anything else is 1â†œ−â†œ8/36, or 28/36.
So, to calculate the expected value, we multiply the probabilities by the values 

for each and add them all up, like this:

Outcome Chanceâ†œ×â†œOutcome Value 
7 6/36â†œ×â†œ$5 $0.83

11 2/36â†œ×â†œ$5 $0.28

Everything else 28/36â†œ×â†œ− $1 −$0.78

Expected value $0.33

So, we see that this is a good game to play, because in the long run, you will, on aver-
age, win thirty-three cents each time you play. But, what if we changed the game, so 
that only 7’s are winning numbers and 11’s make you lose a dollar, just like all the 
other numbers? This changes the expected value, like this:

Outcome Chanceâ†œ×â†œOutcome Value 
7 6/36â†œ×â†œ$5 $0.83

Everything else 30/36â†œ×â†œ− $1 −$0.83

Expected value $0.00

An expected value of zero means that this game is just as good as flipping a coin in 
the long run. Wins and losses are completely balanced. What if we change it again, 
so that this time only eleven wins?

Outcome Chanceâ†œ×â†œOutcome Value 
11 2/36â†œ×â†œ$5 $0.28

Everything else 34/36â†œ×â†œ− $1 −$0.94

Expected value −$0.86
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Ouch! As you might expect, this is a losing game. You’ll lose, on average, about 
eighty-six cents each time you play it. Of course, you could make it into a fair game, 
or even a winning game, by increasing the payoff for getting an eleven.

Consider Values Carefully
Expected value is an excellent tool for game balancing, which we will discuss more 
in the next chapter—but if you aren’t careful about what the true value of an out-
come is, it can be very misleading.

Consider these three attacks that might be part of a fantasy role-playing game:

Attack Name Chance of Hitting (%) Damage 
Wind 100 4

Fireball 80 5

Lightning bolt 20 40

What is the expected value of each of these? Wind is easy—it always does exactly 
4 damage, so the expected value of that attack is 4. Fireball hits 80% of the time 
and misses 20% of the time, so it’s expected value is (5â†œ×â†œ0.8)â†œ+â†œ(0â†œ×â†œ0.2)â†œ=â†œ4 points, 
the same as the wind attack. The lightning bolt attack doesn’t hit very often, but 
when it does, it packs a wallop. Its expected value is (40â†œ×â†œ0.2)â†œ+â†œ(0â†œ×â†œ0.8)â†œ=â†œ8 points.

Now, based on those values, one might conclude that players would always use 
the lightning bolt attack, since on average it does double the damage of the other 
two attacks. And if you are fighting an enemy that has 500 hit points, that might be 
correct. But what about an enemy with 15 hit points? Most players would not use 
lightning bolt in that case—they would opt for something weaker but surer. Why is 
this? Because even though the lightning bolt can do 40 damage points, only 15 of 
them are of any use in that situation—the real expected value of the lightning bolt 
against an enemy with 15 HP is (0.2â†œ×â†œ15)â†œ+â†œ(0.8â†œ×â†œ0)â†œ=â†œ3 points, which is lower than 
both the wind and the fireball attack.

You must always take care to measure the real values of actions in your game. If 
something gives a benefit that a player can’t use, or contains a hidden penalty, you 
must capture that in your calculations.

Human Element
You must also keep in mind that expected value calculations do not perfectly pre-
dict human behavior. You would expect players to always choose the option with 
the highest expected value, but that is not always the case. In some cases, this is 
due to ignorance—because players did not realize the actual expected value. For 
example, if you didn’t tell players the respective chances of wind, fireball, and 
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lightning bolt, but left it to them to discover them through trial and error, you might 
find that players who tried lightning bolt several times and never got a hit reached 
the conclusion that “lightning bolt never hits” and therefore has an expected value 
of zero. The estimates that players make about how often an event happens are 
often incorrect. You must be aware of the “perceived probabilities” that players have 
arrived at, because it will determine how they play.

But sometimes, even with perfect information, players still will not choose an 
option with the highest expected value. Two psychologists, Kahneman and Tversky, 
tried an interesting experiment, where they asked a number of subjects which of 
the two games they would like to play:

Game A:

66% chance of winning $2400

33% chance of winning $2500

1% chance of winning $0

Game B:

100% chance of winning $2400

These are both pretty great games to play! But is one better than the other? If you 
do the expected value calculations

Expected Value of Game A: 0.66â†œ×â†œ$2400â†œ+â†œ0.33â†œ×â†œ$2500â†œ+â†œ0.01â†œ×â†œ$0â†œ=â†œ$2409

Expected Value of Game B: 1.00â†œ×â†œ2400â†œ=â†œ$2400

You can see that Game A has a higher expected value. But only 18% of the subjects 
they surveyed picked A, while 82% preferred playing Game B.

Why? The reason is that the expected value calculation does not capture an 
important human element: regret. People not only seek out options that create the 
most pleasure, they also avoid the ones that cause the most pain. If you played Game 
A (and we’re assuming you only get to play it once), and were unlucky enough to 
get that 1% and $0, it would feel pretty bad. People are often willing to pay a price 
to eliminate the potential of regret—“buying peace of mind,” as the insurance sales-
men say. Not only are they willing to pay a price to avoid regret, they are willing to 
take risks. This is why a gambler who has lost a little money is often willing to take 
more risks to try to get the money back. Tversky puts it this way: “When it comes 
to taking risks for gains, people are conservative. They will make a sure gain over 
a problem gain. But we are also finding that when people are faced with a choice 
between a small, certain loss and a large, probable loss, they will gamble.” This 
appears to be a large part of the success of the “free-to-play” game Puzzle & Dragons. 
Players perform a series of puzzles and rack up treasures while making their way 
through a dungeon. Sometimes, though, they perish in the dungeon, and the game 
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effectively says, “Oh, that’s too bad, you’re dying. Look at all the treasure you are 
going to lose. Are you sure you don’t want to pay just a little bit of real money, so 
you have a shot at keeping what you have earned?” And many people respond by 
paying cash money to avoid that small, certain loss.

In some cases, the human mind inflates some risks completely out of proportion. 
In one study, Tversky asked people to estimate the likelihood of various causes of 
death and obtained the following results:

Cause of Death 
Estimated 

Chance (%) 
Actual 

Chance (%) 
Heart disease 22 34

Cancer 18 23

Other natural causes 33 35

Accident 32 5

Homicide 10 1

Other unnatural causes 11 2

What is particularly interesting here is that the subjects making estimates under-
estimated the top three categories (natural causes of death) and significantly over-
estimated the bottom three (unnatural causes of death). This distortion of reality 
seems to be a reflection of the fears of the respondents. What bearing does this have 
on game design? As a designer, you must have not only a grasp of the actual prob-
abilities of events in your game but also the perceived probabilities, which may be 
quite different for a number of reasons.

You will need to consider both actual and perceived probabilities when calculating 
expected values, which provide such useful information that they make Lens #35.

Lens #35: The Lens of Expected Value

To use this lens, think about the chance of different events occurring in your 
game and what those mean to your player.

Ask yourself these questions:

âŠ‘● What is the actual chance of a certain event occurring?

âŠ‘● What is the perceived chance?

âŠ‘● What value does the outcome of that event have? Can the value be quanti-
fied? Are there intangible aspects of value that I am not considering?

âŠ‘● Each action a player can take has a different expected value when I add up 
all the possible outcomes. Am I happy with these values? Do they give the 
player interesting choices? Are they too rewarding, or too punishing?
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Skill and Chance Get Tangled
As tricky as probability and the difference between actual and perceived values 
might be, the game mechanic of chance has more tricks up its sleeve. As much as 
we like to think that chance and skill are completely separate mechanics, there are 
important interactions between them that we cannot ignore. Here are five of the 
most important skill/chance interactions for a game designer to consider.

	1.	 Estimating chance is a skill: In many games, what separates the skilled players 
from the unskilled is their ability to predict what is going to happen next, often 
through calculating probabilities. The game of blackjack, for example, is almost 
entirely about knowing the odds. Some players even practice “card counting,” 
which is the practice of keeping track of what cards have already been played, 
since each card played changes the odds of what subsequent cards can appear. 
The perceived probabilities in your game can vary a great deal between players 
who are skilled estimators and those who are not.

	2.	 Skills have a probability of success: Naively, one might think that completely 
skill-based games, such as chess or baseball, have no aspects of randomness 
or risk in them. But from a player’s point of view, this simply isn’t true. Every 
action has some level of risk, and players are constantly making expected value 
decisions, deciding when to play it safe and when to take a big risk. These risks 
can be difficult to quantify (what are the odds that I can successfully steal a base 
or that I can trap my opponent’s queen without him noticing?), but they are still 
risks. When designing a game, you need to make sure they are balanced just as 
you would balance “pure chance” game elements, like drawn cards or die rolls.

	3.	 Estimating an opponent’s skill is a skill: A big part of a player’s ability to deter-
mine the chances of success for a particular action rests on their ability to estimate 
their opponent’s skill. A fascinating part of many games is trying to fool your oppo-
nent into thinking your skills are greater than they are, to prevent him from trying 

Expected value is one of your most valuable tools for analyzing game balance. 
The challenge of using it is finding a way to numerically represent everything 
that can happen to a player. Gaining and losing money is easy to represent. 
But what is the numerical value of “boots of speed” that let you run faster or 
a “warp gate” that lets you skip two levels? These are difficult to quantify per-
fectly—but that doesn’t mean you can’t take a guess. As we’ll see in the next 
chapter, as you go through multiple iterations of game testing and tweaking 
parameters and values in your game, you will also be tweaking your own esti-
mations of the values of different outcomes. Quantifying these less tangible 
elements can be quite enlightening, because it makes you think concretely 
about what is valuable to the player and why—and this concrete knowledge 
will put you in control of the balance of your game.



199

Mechanic 7: Chance

anything too bold and to make him uncertain of himself. Likewise, sometimes the 
opposite is true—in some games, it is a good strategy to make a player think your 
skills are less than they really are, so that your opponent will not notice your subtle 
strategies and will perhaps try actions that would be risky against a skilled player.

	4.	 Predicting pure chance is an imagined skill: Humans look for patterns, con-
sciously and subconsciously, to help predict what is going to happen next. Our 
mania for patterns often leads us to look for and find patterns where none exist. 
Two of the most common false patterns are the “lucky streak fallacy” (I’ve had 
several wins in a row, and therefore another is likely) and, its opposite, the “gam-
bler’s fallacy” (I’ve had several losses, so I must be due for a win). It is easy to 
scoff at these as ignorant, but in the all-important mind of the player, detecting 
these bogus patterns feels like the exercise of a real skill, and as a designer, you 
should find ways to use that to your advantage.

	5.	 Controlling pure chance is an imagined skill: Not only do our brains actively 
seek patterns, but they also actively and desperately seek cause-and-effect rela-
tionships. With pure chance, there is no way to control the outcome—but that 
doesn’t stop people from rolling the dice a certain way, carrying lucky charms, 
or engaging in other superstitious rituals. This feeling that it might be possible to 
control fate is part of what makes gambling games so exciting. Intellectually, we 
know it isn’t possible, but when you are up there rolling the dice, saying “come 
on, come on…,” it certainly feels like it might be possible, especially when you 
get lucky! If you try playing games of pure chance, but completely disengage 
yourself from the idea that anything you think or do can influence the outcome, 
much of the fun suddenly drains away. Our natural tendency to try to control fate 
can make games of chance feel like games of skill.

Chance is tricky stuff, because it intertwines hard math, human psychology, and 
all of the basic game mechanics. But this trickiness is what gives games their rich-
ness, complexity, and depth. The last of our seven basic game mechanics gives us 
Lens #36.

Lens #36: The Lens of Chance

To use this lens, focus on the parts of your game that involve randomness and 
risk, keeping in mind that those two things are not the same.

Ask yourself these questions:

âŠ‘● What in my game is truly random? What parts just feel random?

âŠ‘● Does the randomness give the players positive feelings of excitement and 
challenge, or does it give them negative feelings of hopelessness and lack 
of control?
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At long last, we have made it through all seven of the basic game mechanics. 
Soon, we will move onto more advanced mechanics that are built from these, such 
as puzzles and interactive story structures. But first, we need to explore methods of 
bringing these basic elements into balance.

Other Reading to Consider
Game Mechanics: Advanced Game Design by Ernest Adams and Joris Dormans. 

This book gets into a lot of wonderfully nitty-gritty details about the interac-
tions of various game mechanics and gives an introduction to the fascinating 
Machinations system for simulating your game design.

The Oxford Book of Board Games by David Parlett. Contains more details on 
Parlett’s Rule Analysis, as well as descriptions of some amazing but little-known 
board games from previous centuries.

Uncertainty in Games by Greg Costikyan. An incredibly insightful book about the 
nature of chance and uncertainty in games. I get something new from it every 
time I read it.

The Unfinished Game: Pascal, Fermat, and the Unfinished Letter that Made the 
World Modern by Keith Devlin. If you want even more details of the story of 
how probability came to be, this is the definitive book.

âŠ‘● Would changing my probability distribution curves improve my game?

âŠ‘● Do players have the opportunity to take interesting risks in the game?

âŠ‘● What is the relationship between chance and skill in my game? Are there 
ways I can make random elements feel more like the exercise of a skill? Are 
there ways I can make exercising skills feel more like risk taking?

Risk and randomness are like spices. A game without any hint of them can be 
completely bland, but put in too much and they overwhelm everything else. 
But get them just right, and they bring out the flavor of everything else in your 
game. Unfortunately, using them in your game is not as simple as sprinkling 
them on top. You must look into your game to see where elements of risk and 
randomness naturally arise, and then decide how you can best tame them to 
do your bidding. Don’t fall into the trap of thinking that elements of chance 
only occur around die rolls or randomly generated numbers. On the contrary, 
you can find them wherever a player encounters the unknown.


